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The calculations of a previous paper on intersecting disks are completed. 
Further quantities of interest in connection with intersecting disks and spheres 
are defined. The above considerations are extended to spherical boundary 
conditions. Then two applications are stated: The penetrable-sphere model of 
Widom and Rowlinson, and the hard-sphere system. Finally, the generalization 
to D-dimensional spheres is outlined. 
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1. INTRODUCTION 

In a previous paper (I), the area of intersection of n equal circular disks was 
investigated. The radius of the disks was set equal to unity and will be o 
now. Moreover, not only the area of intersection I(1,2 . . . .  , n), but also 
the corresponding length of the boundary B(I ,2  . . . . .  n) will be consid- 
ered. The result for two disks 1, 2 is 

1 ( 1 , 2 ) =  I12 0 < r 1 2 < 2 o  2 -- B(1,2)  

0 2o ~< rl2 

I 1 = 7tO 2, B l = 27ro (1.1) 

=  o {cos l(r,J o)- ( lJ O) l 

Blz = 4o[cos- ' (r i2/2o) ] 
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For n disks, 1(1,2 . . . . .  n) is the area on which all n disks intersect. It is 
denoted by I12..., if it is nonzero and if the removal of any of the disks 
increases the area. Correspondingly, B(1, 2 . . . . .  n) is denoted by B12 . . . .  in 
this case. 

Direct calculation of B123 yields (compared with the known 1123) 

I123 = 1(112 4- 113 4- 123 - ~r~ + lr12r13r23/Rc (1.2a) 

B123 = �89 + B13 + B23 - 27ro) (1.2b) 

R c is the circumradius of the triangle (123), see Powell (2) and Kratky. (3) 
Equations (1.2) show that there is a simple relation between 1123 and B123. 
In fact Eqs. (1.2) meet a general relationship: If the locations of the disks 
are arbitrary, but fixed, I(1,2 . . . . .  n) and B(1,2 . . . . .  n) can be consid- 
ered as functions only of the radius a. Then, the following relation holds: 

B(1,2 . . . . .  n) = dI(1,2 . . . . .  n)/do (1.3) 

Thus, 112 and I123 c a n  also be obtained by integrating B12 and B123, 
respectively. The constant of integration C can be evaluated in a simple 
manner [r12 = max(rg) without loss of generality]: 

112---)0 if (r12/20)---~ 1, A~0: r~2 ~< rf3 4- r23 
(1.4) 

I123~A if (Rc/o)~ 1, ~112(0 = Re): r122 > r~3 4- r23 

This means a considerable simplification obtaining Eq. (l.2a) compared 
with other methods (1'4'5) since actual calculation shows that (1.2b) can be 
obtained easily. C = 0 for 112, C = �88 r12r13r23/R for 1123; see (1.1) and (1.2), 
respectively. 

It has been shown that the intersection of n disks can always be 
reduced to intersections of at most three disks (1). The same relations as for 
I ( 1 , 2 , . . . ,  n) can now be transcribed for B(1,2 . . . . .  n), e.g., Eq. (3.2) of 
Ref. 1 also holds for B1234: 

1,234 = Ilk, +/jk,  - Ikt, B1234 = nikt 4- B j k ,  - -  Bkl (1.5) 

In the case I(1,2, 3 ,4 )=  I1234, the disk centers 1,2, 3,4 can be interpreted 
as the corners of a convex quadrangle (i). Equation (1.5) is true if i a n d j  are 
connected by a diagonal of the quadrangle. Then k and l are also 
connected by a diagonal, yielding a second correct expression for ]1234 and 
B1234 like (1.5). Thus, two of the six permutations (i,j,k,l) of (1,2,3,4) 
yield the correct result. Incidentally, this means that, e.g., 1123 can be 
expressed in terms of the other intersections of three disks and of two 
intersections of two disks. 

Now a fifth disk is added. If I(1,2,3,4,5) -- I12345, then (1,2,3,4,5) is 
a convex pentagon with i and j being connected by a diagonal if this was 
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true for (1,2, 3, 4). Thus, 

112345 = Iikl5 "1"- Ijkl5 --  Ik15, B1'2345 = Bikl5 t-  Bjkl5 --  Bk l  5 (1.6) 

and so forth when adding more and more disks. Five of the possible ten 
relations like (1.6) yield the correct 112345 (and  B12345) because a pentagon 
has five diagonals. Generally (n disks), [(~) - n] relations like (1.5) or (1.6) 
out of the (~) possible relations are correct. Even if all incorrect relations 
yield the same estimate of 112 . . . .  among themselves, the correct solution 
can be obtained by taking the most degenerate value for n >/6. The 
advantage of this method is that no geometrical considerations are neces- 
sary. In the following, it will be shown that another simple recipe can be 
used to obtain the correct 112 . . . .  for any n (n >/4). If one forms all (~) 
equations like (1.5) or (1.6) and determines the corresponding estimates of 
I12 . . . . .  the maximum value yields the correct intersection. 

To show this, only set-theoretical arguments are necessary. Two gen- 
eral results of set theory are: 

F(A n B)  = F(A) + F ( B ) -  F(A U B)  (1.7a) 

( c  u D) n e = ( c  n E )  u (D n E )  (1.7b) 

where A, B, C, D, E are sets, /~ is a measure, U is the union, and n is the 
intersection. We number now the considered sets as If, I j ,  I~, I~ (s stands 
for "set") and define 

A - -  I~ n ( I j  n lT,), 

c-1; ,  D-1j,  

Using equations (1.7) gives 

B - - d n  (1j n 
(1.8) 

E - - ( I j  n 

/~[(I~ n I~) n (IJ N I~)] = /z[ I~  n ( I j  n I~)] + F[I~ N ( I j  n I j ) ]  

- F [ ( I j  n Ij)  O (I~ U I~)] (1.9) 

In a more convenient way (I  being the measure of IS), this can be written 
as 

I (1 ,2 ,3 ,4)  = I(1 ,3 ,4)  + I(2,3,4)  - #[(1;  N I~) O (1{ U I~)] 

/> I (1 ,3 ,4)  + I(2 ,3 ,4)  - I(3,4)  (1.10) 

Relation (1.10) is generally valid for any sets with, e.g., I(1,2, 3) being the 
measure of the intersection of the first, second, and third set. The equality 
is valid if and only if (I  S o Ij) c_ (I~ U I~). Now we assume that we have 
four equal disks with I(1,2, 3, 4 ) =  I1234. In this case, (1.10) becomes 

I, z34/> Ilk / + Ijk / -- Ik/ (1.11) 

for any permutation (i, j ,  k, l). Since we know that for at least one (really 
two) relations like (1.11) the equality sign is valid, one has only to take the 
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maximum value of the six lower bounds of I1234 to obtain the correct /1234.  
By the way, the geometrical condition that i and j are connected by 
diagonals now turns out to be equivalent to I~t c_ (17 U/ f ) .  

For B1234 , the equivalent of (1.11) and thus the "maximum method" is 
not valid generally. But from I1234 one  knows which indices one has to take. 
To obtain for 112345 a formula analogous to (1.10) for 11234 , one  has to 
define 

A ~ - I ~ N ( I ~ N I ~ N I ~ ) ,  B - - I ~ N ( I ~ N I ~ N I ~ )  
(1.12) 

C -- If, D -- I~, E -- (I~ n 1~ n 1~) 

Doing the same calculation as above, this ends up in 

I(1,2,3,4,5) = I(1,3,4,5) + I ( 2 , 3 , 4 , 5 ) -  F[(I~ n I~ N I~) N (11U I2) ] 

> I(1,3,4,5) + I(2,3,4,5) - I(3,4,5) (1.13) 

and so on for n > 5 disks. If for (1.10) the equality sign is valid, this is also 
the case for (1.13). This is now clear without any geometrical consideration, 
since 

[(I~ N I,~) C (I~ U 1~)] ~ [ ( I ~  N I~ N I~) C_ (I~ U I~)] (1.14) 

The above considerations split up into two groups: First, purely set- 
theoretical arguments have been used which are valid generally, cf., (1.9) or 
(1.10). Second, geometrical considerations (1) yield the result that for at least 
one combination of indices the equality sign is true in (1.11) with 11234 
being the intersection of four equal disks. 

It is interesting to compare the results for disks with the general case of 
D-dimensional equal spheres (D - 1,2, 3). For D = 1 (i.e., for overlapping 
intervals), 

I(1,2 . . . . .  n) = I(p,q)  } = max(rq), 1 ~< i < j  < n (1.15) 
B(1,2, , n) B(p,q) req 

That means that a reduction to the intersection of two intervals is always 
possible. For D = 2 (disks), a reduction to the intersection of at most three 
disks is always possible; see above. For D = 3 (spheres), the knowledge of 
I(1,2, 3, 4) would be necessary to solve the general case. 

Up to now, the D-dimensional spheres were assumed to be thoroughly 
penetrable. If, however, the restriction r/j > o is placed, then I(I,  2 . . . .  , n) 
> 0 cannot be fulfilled for n > ~, ~ being a function of D. The problem is 
equivalent to filling n points (r r > o) within an open D-dimensional sphere 
of radius ~. The solution is (6-8}' 

~(D = 1) = 2, ~(D = 2) = 5, ~(D = 3) = 12 (1.16) 

Equation (1.16) will be used in Section 4. 
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Some applications of the knowledge of I ( 1 , 2 , . . . ,  n) have already 
been discussed by the author. (~) Melnyk and Rowlinson (9) also considered 
several aspects of "overlapping figures." Before further applications can be 
treated, more quantities in connection with intersecting disks have to be 
defined. 

2. DEFINITION OF THE QUANTITIES I(j), B(j), V(k), S(k), S(k) 
The quantities defined in this section refer to D-dimensional equal 

spheres (in the following called "spheres") so that the three-dimensional 
diction ("volume," "surface") will be used. 

n spheres of radius o are assumed. The location of the spheres is 
arbitrary, but fixed. F o r j  out of the n spheres, the set-theoretical intersec- 
tion IS(il . . . .  ,/j) and the corresponding measure (volume) I ( i  I . . . .  ,/j) is 
given by 

IS(i , , i2 . . . . .  iy)~. ( p / r ( p ,  it) < o , l =  1,2 . . . . .  j )  (2.1a) 

I ( i l , i  2 . . . .  , i j ) - - I z [ l S ( i , , i > . . . , i j ) ] ,  l < i , < i 2 . . .  < i j < n  (2.18) 

r(p,  it) is the distance between an arbitrary point p of the intersection and 
sphere center i t . It is convenient to define 

I ( j ) -  E I ( i ,  . . . . .  ij) (2.2) 
1~<i1<i2" '"  < ~ < n  

i.e., the sum of all volumes of intersection of j spheres. The quantities 
defined in (2.1) are independent of the location of the ( n - j )  remaining 
spheres. This is not the case for the following quantities: 

V*(i , , i  2 . . . .  , i k ) - -  { p / r ( p ,  4 ) < o ,  l =  1,2 . . . . .  k 

r ( p , i ~ ) >  o, m = k + l  . . . . .  n} (2.3a) 

V(i, , i2 . . . . .  ik) --  IZ[ V*(i,,i2 . . . .  , ik)] (2.3b) 

Unlike P ( i l , . . . ,  ij), it follows that all V' ( i  1 . . . .  , ie) are disjoint. There- 
fore, forming the union of V * corresponds to summing up the V: 

V(k) --  LJ V'(i~ . . . . .  i k 
1 < i 1 <  . . -  <ik<~n 

V(k) 1 < i ] < - - .  <ik<n 

if V(K)--/z[V~K)] as usual. Correspondingly, the whole volume V U 
--/~(V~ ) covered by the union of spheres is the sum of all V(k); see (1.7a): 
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(2.4) is valid since different g s ( i l , . . . ,  ik) with the same k are disjoint. 
Since moreover different V'( i  1 . . . . .  ik) with different k are disjoint, (2.5) is 
valid. V(k ) is the total volume covered by k and only k spheres. According 
to (2.5), the union volume V U can be split up into volumes V(~). 

Because of the property of being disjoint, the V s are more convenient 
than the I s. On the other hand, the intersections I ( i  1 . . . . .  //) are known 
explicitly (see Section 1). Making use of (1.7), however, it is easy to relate 
I(j)  to g(k):  

( - )  <j> 
j k (~) - - 0  if t > r (2.6) 

~k ( k )  t < ( j , k )  <<. n I(j)  = V(k ) 
J 

V U = ~ ( -  1) j+tI( j)  (2.7) 
j= l  

The restriction 1 ~< (j,  k) in (2.6) can be removed easily by introducing I(0 ) 
and V(0 ~ in a consistent way. To do this, it is necessary to assume that the 
interacting spheres are enclosed in a volume V. The boundary of V is 
arbitrary but must not intersect with any of the spheres. Then, 

I(o ) ~. V, V(o ) ~. V -  V v (2.8) 

Both definitions are only extensions of the above I(j) and V(k ) . I(0 ) means 
that there is no restriction r(p, it) < a, thus it is the whole volume V. V(0 ) 
means the total volume which is covered by no sphere, which is just 
V -  V v. Using (2.8), equations (2.6) are valid for 0 < (j,  k) ~< n. Even the 
upper limit n may be dropped since V(m ) and I(m ) are zero for m > n. 

I(0 ) = V and I(1) = ~ = 1 I ( i )  = nI* (I* being the volume of a sphere) 
are independent of the configuration. Thus, there exist two combinations of 
the V(k ) which are independent of the given configuration, too [cf. (2.6)]: 

V =  I(o ) = ~ V(k ), nI* = I(~) = ~ kV(k ) (2.9) 
k=0 k=0 

Relations (2.9) are of some help in the hard-disk case (1~ 
The above-mentioned condition that the spheres must not intersect the 

boundary of V is too restrictive in many cases. Therefore periodic bound- 
ary conditions will be assumed in the following. The length of the (cubic) 
cell must be at least 4a to avoid the case that a sphere intersects another 
from two sides. Then, the results of the paper are valid for any n, r 0 being 
the minimum distance of centers i, j .  

Analogous considerations as for the volumes can be made for the 
corresponding surfaces of the volumes. The analog of (2.2) is evident: 

B(j) - ~ B ( i ,  . . . . .  ij) (2.10) 
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B ( i  1 . . . . .  t)) being the surface of I ( i  1 . . . . .  /j), see (2.1b). In the case of 
V(k ) , the natural  way of defining a surface seems to be 

S" ( i I . . . . .  ik) = surface of V" ( il . . . . .  ik) (2.1 la)  

S~k) = U SS(  i, . . . . .  ik) (2.11b) 

compare  (2.4). Since all S ' ( i  1 . . . .  , ik) with the same k are disjoint the 
analog of (2.4) for S is also valid, S(  �9 �9 �9 ) be ing /~ [S ' (  �9 �9 �9 )1: 

S ( K ) -  ~ ,  S ( i , , . . . ,  ik) (2.12) 
l < i l <  . . .  <ik<n 

However,  not  all S" are disjoint since volumes of the type V ' ( i l , . . . ,  ij) 
and V ' ( i  I . . . .  , i D may have a common  border  (m3 if k = j  _ 1. To obtain 
only disjoint surfaces, it is convenient  to define a set S ' ( i  I . . . . .  ik) as the 
subset of the surface of VS(il . . . .  , ik) which borders  on a V * ( i l , . . . ,  ik, 
i~+ i), ik+ l being any of the remaining (n - k) spheres: 

S ' ( i , , . . . ,  ik)~. S S ( i l ,  . . . ,  ik) O [ 0 ~s(il . . . . .  ik, ik+l) ] (2.13) 
l k+ ] 

S(,) = 0 because of (2.13). All sets S '  are disjoint now. Only for S u it is 
s -s  = / , ( su r f ace  of V~ ). The  quantities S(k ) convenient  to define S u = S U = 

S i , ( S ( k ) ) -  ~[U S*(i l  . . . . .  ik) ] and B(j) are related in a way very close to 
the relation between V(k ) and I ( j ) ,  Eqs. (2.6), (2.7): 

S(k) = ~j ( Jk)(-1)J+kB(j+l) 

, ,  = 2 ( k 
k \J] 

O < ( j , k )  <.N n - 1  (2.14) 

S 0 = ~ (-  1)J+lB(j) (2,15) 
j = l  

B(o ) need not  be defined, but  a consistent definition would be B(0 ) = 0 
since the periodic cell has no surface. S(0 ) i s - -as  a consequence of defini- 
tion (2.13)--just  the boundary  between V~ and V~'0). Compar ison between 
(2.14) and (2.15) shows indeed that 

S(0 ) = S u (2.16) 

compared  with V(0 ~ = V -  Vu, see (2.8). There  exists one relation between 
the S(k ). B(1 ~ = ~7=1 B ( i ) =  riB* (B* being the surface of a sphere) is 
independent  of the configuration. Thus, f rom (2.14) follows 

n - 1  

nB* = B(I ~ = ~ ,  S(k ) (2.17) 
k = 0  
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Now, the relation between S(k ) and S(k~ will be stated: 

S(k ) = S(k ) -t- S(k_l)  0 < j < k < n 
(2.18)  

= ( -  l )  J+  - o 

J 

From the definition S(_ 1) - -0 ,  S(o ) = S(o ~ = Su results; cf. (2.16). 
Combining (2.14) with (2.18) yields the relation between S(~) and B(j): 

S(k) =~J ( - 1 ) J + k [ ( J ) - ( k J l ) l B ( J + | )  n ] 

B(,+,,  = ~ ( - 1 )  ~ i = ~ k ( ) ) ( - 1 )  / S(k, 

O < j < n - 1  
O < k < n  

(ml)--O 
for any m 

(2.19) 

The upper bounds (n - 1) or n of the variables i, j ,  and k occurring in Eqs. 
(2.14)-(2.19) are only set for convenience to avoid identities as 0 = 0. If one 
sets arbitrary higher bounds, these equations remain valid. This is relevant 
when searching for relations between the S(k)- Since B(1) = nB* is indepen- 
dent of the special configuration, see (2.17), from (2.19) it follows that 

nB* = B(O = ( -  1) k (-- 1) i S(/r 
k = O  i= 

= 0) + "S(2) + S(4) + " " " if n even (2.20) 

[S(1 ) + S(3 ) + S(5 ) + if n odd 

But since the upper limit for i does not matter, both relations must be true 
for any n, yielding the additional relation 

k ( -  1)~g(k~ = 0 (2.21) 
k=0 

This yield together with (2.20) 

2nB* = 2B(l  ) = k S-(k) (2.22) 
k=0 

(2.22) meets the fact that every part of the surface S is the common border 
of two volumes and is thus counted twice. The disjoint surfaces S, however, 
yield (2.17). By the way, (2.18) directly yields 

2 gCk~ = 2 2 S(k~ (2.23) 
k>O k>O 

At last, the relation between the volumes and the surfaces will be studied. 
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Equation (1.3) can easily be generalized to 

O-~-I(i 1 . . . .  ,/j) = B(i  1 . . . . .  /j) 
~o 

a---~ I(j) = B(j) 

(2.24a) 

(2.24b) 

(2.24b) is an immediate consequence of (2.24a); see (2.2). (O/Oft) means 
that the location of the centers of the spheres is held fixed. If one wants to 
relate S and V in an analogous way, the equations 

Su = Vu S(~ = 0o V(~ (2.25) 

are obvious and furthermore connected by (V(0) + Vu = V), Eq. (2.8), V 
being independent of o. The generalization of (2.25) is 

a (2.26) a--~ V ~ )  = S ~ , _  ]) - S~k) 

Whenever a volume of the type V ( i ] , . . . ,  ik) borders a volume of the type 
V ( i l , . . . ,  ik, i~+ 1), increase of a increases the latter volume at this border 
to the debit of the former. 

Using (2.24) and (2.26), the two combinations of V~k) which are 
independent of the configuration, see (2.9), yield 

0 =  ~_~S(k ) -- ~ S(k_l); B(]) = • S ( k  ) (2.27) 

i.e., one trivial relation 0 = 0 and the known relation (2.17). 

3. SPHERICAL BOUNDARY CONDITIONS 

Up to now, periodic boundary conditions have been assumed. The 
above considerations can be extended to spherical boundary conditions 
(spherical BC) which have been introduced by the author. (]1) In the 
following, explicit formulas are given for disks. 

The spherical BC are defined in the following way: The D-dimensional 
volume of the system lies on the surface of a (D + 1)-dimensional sphere of 
radius R. Now, equal disks on the surface of a sphere are considered 
(V = 4~rR 2). The distances on the sphere are geodesic distances correspond- 
ing to the shorter segment of a great circle through two points. If the 
(geodesic) radius of the disks is o, then 

I I = 4 ~ r R 2 s i n 2 ( l f l ) l f l - - o / R ,  0 <  f l < ~ r  (3.1) 
B] = 2~rR sin fl J 

A great circle corresponds to fl = �89 tr. To avoid anomalous intersections 
which only occur when fl >�89 i.e., o Z / V  > ~r/16, fl <�89 shall be as- 



628 Kratky 

sumed in the following. This may be compared with the condition 0 2 / V  
< 1/16 for disks with periodic BC, Section 2. 

The cases for I(1,2) are 11 = 12, I12, and 0, as usual. The different 
regions of rl2 are the same as in Eq. (1.1). The result for I12 and B12 is 

1 , 2 = 4 R 2 [ c o s - l (  sina'2 - ~ ] '  cos/3cos-'(tanaI2~]tan/3 , ]  

Bl2=4Rsin/3cos- l (  tana12 ) (3.2) 

a12-- r12/2R, 0 < oq2 </3 <<. �89 

112 has been obtained by integrating BL2 and using (1.4) to determine the 
integration constant C. In Ref. 11, 112 has been calculated directly; the 
complicated result given there may be compared with the simpler represen- 
tation of 112 now. 

The cases for I(1,2,3) are I~ = 12 = 13, 112 , 113 , /23 ,  1123, and 0, 
respectively. In the following, r12 is arbitrary, but fixed within the limits 
0 < r12 < 20. Thus, I ( 1 , 2 ) =  112, and the trivial case I ( 1 , 2 , 3 ) =  11, i.e., 
r12 = r13 = r23 = 0, cannot occur. The possible locations of center 3 can be 
divided into several regions according to the corresponding type of 
I(1,2,3). A discussion of the regions for disks (or spheres) in Euclidean 
space has been given in the Appendix of Ref. 12, where " - g f '  means 1/j. 
Analogous considerations can be done for spherical BC. To simplify the 
problem, it is now assumed without loss of generality that rl2 = max(r12, 
rl3, r23), 0 ( r12 ( 20. Then, only the c a s e s  112 , I123, and 0 occur. They can 
be characterized in the following way: Points P and Q are the two solutions 
of the equation 

Fp1 ~ FP2 ~ 0 I rQl rQ2 = 0 ,  rl2 = max(r12, r13, r23 ) (3.3) 

P is assumed to lie at the same side of the straight line (great circle) through 
1 and 2 as center 3. Then it follows 

Ii2: r e 3 < o  and ra3<<.o 
1123: re3 < o and rQ3 > o 
0: rp3 >1 o and rQ3 > o 

(3.4) 

Equations (3.3) and (3.4) are valid to characterize the regions of center 3 for 
spherical BC as well as in Euclidean space. Employing spherical geometry, 
these relations can be used to define the borders of the regions analytically 
also for spherical BC. If 0 >~ 0 is the angle at center 1 of the (spherical) 
triangle (123), 0 < �89 follows from r12 = max(r~). 0 can be expressed as a 
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function of the distances ry in the following way (% -- ro./2R): 

Euclidean: 0 = cos-l[(r~2 + r~3 - r~a)/(2r12r13) ] 

Spherical: 0 -- cos-J[  (cos 2a23 - cos 2cq2cos 2a 13)/(sin 2al2sin 2a 13)] 

(3.5) 
If 0 e and OQ correspond to segments of circles with radius o around points 
P and Q, respectively, the regions of disk 3 are as follows: 

112: 0 • O < OO 

1123: OQ < O < O e (3.6) 
O: 0 e < 0  

Euclidean: Oe, Q = _+ cos- 1(r12/2o ) + cos-l(r13/2a ) 

_1 [ tanal2 + cos_J( tana~3 s  ori al 0,o +cos 

0e< 0 is not compatible with rl2 = max(rg) if cos2cq2 > (1 -3sin2fi),  i.e., 
r12 < 3 ~ -  in Euclidean space. For this range of rl2, I(1, 2, 3) 5 a 0. 

Considering the spherical triangle (123) results in explicit formulas for 
B123 and via integration for I123: 

1123 = �89 + 1,3 + 123 ) + (~r + c)R2(cos f l -  1) + C 
(3.7) 

B123 = 1(B12 + B13 + B23 ) - Qr + QRsin  fl 

c is the spherical excess, (~r + c) is the sum of the angles of the spherical 
triangle (123) which can be calculated via relations like (3.5). Equation (1.4) 
can be used to determine C. Inserting the circumradius Rc of the spherical 
triangle (123) instead of a yields 

( [ -1/  tana/j~ \ ~"~/%'  l ( s i n a ' j ) l    cos  cos 
l < i < j < 3  

+ (~r + ,)(1 - cos tic)}, t i c - -R  J R  (3.8) 

A 13 _~. A 23 = 1, A 12 = sign of (sin2a13 + sin2a23 - sin2al2) 

However, R c has not yet been determined. To do this, we compare the 
spherical triangle (123) with the plane triangle (123)p. The circumradius of 
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(123)p, ~ ,  is related to the edges of (123)e, ~j, as usual (2, 3). 

= + + + + 

X (r12 -- r13 "k" s -[- r13 -- s ] - �89 (3.9) 

ri) = 2Rsin(ri)/2R) = 2R sina0-, /3c = (Re~R) = sin-l(ff~c/R ) 

Thus, the intersections up to three disks have been solved for spherical BC. 
Extension to more disks is possible in the same way as exhibited in Section 
1 and Ref. 1 for Euclidean geometry. Especially the "maximum method," 
see (1.11) and (1.13), is again useful for actual calculations. Relations (1.16) 
change for D > 1 into 

nspherical ~ nEuclidean (3.10) 

nspherical being a function of/3 (/3 = 0: Euclidean). By the way, all relations 
of Section 2 are also valid for spherical BC. Again, B(0 ) = 0 since the 
volume of the system has no surface as for periodic BC. 

4, DISCUSSION 

In this paper, several results concerning intersecting equal D- 
dimensional spheres--especially disks--have been given. Before some 
mathematical aspects of these results will be discussed, the connection to 
statistical mechanics shall be briefly outlined. In a further paper, this 
connection will be treated more strictly. 

One connection to statistical mechanics concerns the penetrable-sphere 
model of Widom and Rowlinson. (13x4) N thoroughly penetrable D- 
dimensional spheres of radius o are assumed. The interaction energy U of a 
configuration can be written as 

U =  [ V u - / ( , ) ] c  (4.1) 

c > 0 is an energy parameter. For V u and I(l), compare (2.7). The pressure 
P is given by 

NkTPV _ 1 + ~ e  [ DO (S  u ) _ (V  u )lj (4.2) 

T being the temperature. For D > 1, there is a gas-liquid transition 
characterized by 

( S  U / g)gas ~ ( S  U / g)liqui d (4.3) 

In the case D - - 2 ,  the quantities S u and V u can now be calculated 
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explicitly, so that a Monte Carlo computer experiment can be carried on 
for penetrable disks. 

Now, the statistical mechanics of N D-dimensional hard spheres with 
radius �89 o is considered. This system can be interpreted (10,15) as a system of 
N "exclusion spheres" with radius o. These spheres are partly penetrable, 
r,j/> a. Thus, the conditions for the validity of (1.16) are fulfilled. 1/1(0 ) 
= ( V -  V U ) is the total volume of the "holes" of a given configuration. 
The chemical potential /~ can be expressed in terms of II(o ) (2t: thermal 
wavelength): 

t~/kT = ln()t DN) -- ln( V(0 ) ) (4.4) 

This yields for the phase transition (D > 1): 

< V(o))fluid ~--- < m(o))solid (4.5) 

The pressure is given by (1o,16) 

PV - I + ~ (S(~ l +  O <  Sf ) (4.6) 
NkT 2D (V(o)) 2-D 

where vf is the free volume and s T is its surface. For high fluid densities, s T 
and vf can be related to S(i) and V(0. A computer experiment for hard 
disks using (4.4)-(4.6) is being done now. The actual calculation of I1(0 
and S(0 is efficient for disks since ~(D = 2) is at most 5 for both boundary 
conditions, see (1.16) and (3.10). Thus, at most intersections of five disks 
have to be considered. V(0 and S(0 are correlated with the structure of the 
system. For instance, V(5 ) is zero in the ideal hard-disk lattice and is 
expected to be much less in the solid than in the fluid. 

Finally, the results of the paper shall be discussed from a mathematical 
point of view. Two types of boundary conditions have been considered, the 
periodic BC and the spherical BC. In one dimension (D = 1), both BC are 
equivalent (length of the cell L = 2~R). For D i> 2, it is no longer possible 
to represent the spherical BC in Cartesian coordinates. In Sections 2 and 3, 
upper limits for o (the radius of the considered spheres) with respect to a 
typical length of the cell have been stated for D = 2. Generally, 40 < 2~R 
for spherical BC and 40 < Lmi n for periodic BC, Lmi n being the minimal 
length of the edges of the rectangular cell. For a cubic cell, this corre- 
sponds to 4o < V l/D. This restriction guarantees that the finiteness of the 
system does not come in explicitly. For hard disks with spherical BC, the 
above restriction is certainly fulfilled if the system contains at least six 
disks, but this is automatically the case in practice. Obeying the restriction 
for periodic BC means that all formulas concerning intersections of the 
spheres become the same as in Euclidean space; compare, e.g., the expres- 
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sion "Euclidean" in (3.6), r]2 being the minimum distance of 1,2 for 
periodic BC. 

The results of Section 2 are mainly based on set theory. Thus, they can 
be generalized to equal or not equal arbitrarily shaped bodies with (4Oma x 
~< L m i n )  o r  (4Oma x ~ 2~rR) for periodic and spherical BC, respectively. Oma x 
is the largest diameter of the bodies. Only Eqs. (2.1a) and (2.3a) have to be 
generalized in an obvious way: 

J 
I S ( i ] , i 2 ,  . . . , ij) = N l S ( i l )  

l = l  

g s ( i ] ,  i 2 , . . .  , ik) = I S ( i l ,  i 2 . . . . .  ik) f3 (~ q(im) 
m = k + l  

(4.7) 

IS ( i j )  is the set-theoretical volume of the t~th body; I~(/j) is its complement 
relative to the total volume. 

Strictly speaking, there is a problem concerning the surfaces S . . .  and 
S . . .  defined in Section 2. For instance, in (2.13) it was used that two 
volumes of the type VS(il . . . . .  /j) and V S ( i l  . . . . .  ik) may only have a 
common border if k = j  + 1. However, where the surfaces of two bodies 
intersect, also k = j +_ 2. Since the set of points where this is the case has 
the measure zero, this does not change the results. In special cases, parts of 
the surfaces of two bodies may coincide with nonvanishing measure. Then 
several relations of Section 2 become inconsistent. However, the theoretical 
probability is zero that a random configuration includes such special cases. 
In computer experiments, the probability is not zero (because of the finite 
accuracy) but very small. 

Example: Only two equal spheres are considered. The two surfaces 
coincide if and only if r]2 =0 .  Then V(1 ) = 0 and S(1) = 0, see Eqs. (2.3), 
(2.4), (2.11), and (2.12), but S(1 ) = B(2 ) = 4~rR2 v a 0 because of (2.19). For 
equal D-dimensional spheres, the relevant formulas could be changed easily 
in order to include these special cases. This has not been done since the 
main application is the hard-sphere case where r~ > 0. 

Apart from general considerations concerning intersections of D- 
dimensional equal spheres, the case D = 2 has been solved explicitly for 
periodic and spherical BC (Sections 1 and 3). The case D = 1 shall be 
stated now for completeness: 

11 = 2 0 ,  B ]  = 2;  112 = 2 o ( 1  - r12 ), B]2 = 2 ( 4 . 8 )  

The types of I(1, 2) and the corresponding range of r]2 are the same as for 
disks, Eq. (1.1). Equation (1.15) solves the general case I ( 1 , . .  o, n) and 
B(1 . . . . .  n). Since B(1,2) is not continuous now at r]2 = 2o [B(1,2) = 2 
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and 0, respectively], Eq. (1.3) has to  be changed into 

B(1,2 . . . .  , n ) =  lim ( ( 1 / c ) [ I ( 1 , 2 , . . . ,  n) /o  - I(1,2 . . . .  , n ) /~_, ]  }, 
E--~0 

e > 0 (4.9) 

The same modification is necessary for Eqs. (2.24)-(2.26). The choice of 
this limit is consistent with the definition that the D-dimensional spheres 
are open. (1) 

The special values for the intersections of spheres depend on dimen- 
sion D and on the BC. However, I ( 1 , 2 , . . . ,  n) can be reduced to intersec- 
tions of less than (D + 2) spheres independent of the BC if D < 3, compare 
Eqs. (1.5)-(1.15), Section 3, and Ref. 1. This leads to the conjecture that the 
above fact is also valid for D = 3. The corresponding work is in progress; 
the main result is that the conjecture is true. As an example, we turn to the 
intersection of five spheres (D = 3). We consider only the nontrivial case 
that I ( i , j , k , l ) =  I ~  l for all intersections of four of the spheres. If, e.g., 
center 1 lies within the tetrahedron of the others, then I(1,2, 3,4, 5) = 12345. 
If, however, the five centers form a convex polyhedron, then one of the ten 
permutations (i, j ,  k, l, m) yields the correct I12345 (i.e., the equality is valid): 

112345 >/ liklm -t- Ijklm -- Ikl  m (4.10) 

compare (1.13). Thus, the results for five spheres are very close to the 
results for four disks, see Section 1 and Ref. 1. Powell (17) proved that the 
reduction of I(1,2 . . . . .  n) to intersections of less than (D + 2) spheres 
works in any dimension, even for spheres with different radii. An extension 
to convex bodies seems to be possible. 
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